Al Microservices for Sustainable Innovation in Education

Peter Johnson?®, Phil Ramsden®, Marcus Messer®

% Department of Mechanical Engineering, Imperial College London London, UK
b Department of Mathematics, Imperial College London London, UK

Abstract

Automation in education is increasingly applied to processes requiring pedagogi-
cal judgement. We argue that such automation should be separate from general
platforms used to administrate learning and teaching activities. We propose an ar-
chitecture for the wider ecosystem based on platforms calling external microservices
to provide pedagogical judgements, and that this approach will enable innovation
and foster ethical approaches.

We provide a theoretical framework for microservices based on a literature review
of software architecture principles and a characteristion of the education sector. We
then present results of practical deployment of an exemplar system for providing
automated formative feedback. The system delegates all pedagogical judgement to
external microservices.

The system was deployed to thousands of active student users, covering 13,000
study tasks and 1.5 million calls to external services. We present case studies of the
general deployment, and two specific cases of automated feedback on university-level
mathematical proofs, and school level essays in English language. The case studies
on deployments provide large scale evidence for the feasibility of microservices to
provide pedagogical feedback.

The evidence presented also supports the theoretical framework that microser-
vices for pedagogical judgment promote innovation from a wide variety of experts in
niche areas, emancipate the services to use technology relevant to the specific prob-
lem, prevent platform lock-in leading to pedagogy lock-in, and foster transparency;,
equity of access, and higher quality services.

We discuss the future prospects of a microservice architecture for the education
ecosystem, including the potential risks of such an approach and future research
needs. Our main conclusion is that we present a framework for a new approach to
automating pedagogical judgments, and novel, large scale, practical evidence for its
feasibility.

Keywords: microservice, Al, innovation, ethics

1. Introduction

The use of software for automation in education can be broadly split into two
purposes: administrative and educational. In practice, until recently, most automa-
tion was administrative. Educational decisions that require judgement and account-
ability have previously been automated in niche applications (Hollingsworth, 1960;

Preprint submitted to Elsevier 1%t August 2025

Valenti et al., 2003; Kulik and Fletcher, 2016) but are now rapidly growing, prin-
cipally owing to the wide availability of Large Language Models since 2023 (Wang
et al., 2024; Zhang et al., 2024).

Pedagogical judgement is needed in, for example: content generation, feedback
generation, assessment, analysis, advice, and even decisions such as academic pro-
gression. In this paper, we argue that automated pedagogical judgement should be
separated from the platforms that are used for general administration of teaching.
We aim to articulate why this separation is required, how it should be realised —
using microservices — and what are the architectural tensions to be managed; we
show a practical example of such a separated system deployed on a scale of thou-
sands of students across multiple institutions and with millions of microservice calls
annually.

Our arguments are of two types: first, we argue from practical and technical
views of how software innovation works; and second, we make the ethical case for
separation to enable educator agency, encourage service transparency, and to provide
scaling that leads to equity of access and high quality services.

In this paper we consider it out of scope to ask whether pedagogic judgements
should be automated, what might be considered good judgement, or how to au-
tomate certain judgements. Our view is at the ecosystem level where we ask, if
the automation is happening, and is going to grow, what kind of architecture is
appropriate?

The article begins with a literature review and theoretical framework in two
parts, providing context for each of the two parts of our argument. We recap the
principles of software architecture and modularity, and then focus on interoperability
and microservices. We then review the key ethical aspects of the automation of
pedagogical judgements, and critically analyse how using microservices affects these
ethics. In anticipation of case studies, later in the paper, on the specific example of
automated formative feedback, we also summarise the literature in this area.

In the Section 3 we present an exemplar: a learning management system (LMS)
specialising in automated formative feedback, where all pedagogical judgements are
provided by external microservices. We summarise the user experience, technical
architecture, and three case studies used to evaluate the system. In each case study
we provide both the methods applied, and the results, focusing on the effects of
using a microservice architecture to foster innovation and enable ethical automation
of pedagogical judgement.

In Section 4 we discuss key issues in the use of microservices, including the needs
for future research, and the technical and ethical tensions that are inherent in such
an approach. In Section 5, we conclude that microservices are the recommended
architecture for automating pedagogical judgements, provide guidance on using mi-
croservices, and point to key developments that are required in the near future.

2. Literature review and theoretical framework

This paper takes a position that the software architecture of the education ecosys-
tem would benefit from a set of microservices that each automate separate, granular
pedagogical judgements. In this Section we review the background and literature on
software engineering, beginning with a review of modularity in systems engineering.

We critically analyse modularity from a technical perspective, highlighting its role in
facilitating innovation under certain circumstances — especially when sub-sytems,
such as Al for pedagogical judgements, evolve more rapidly than the wider system.
We extend our technical review of modularity to interoperability, and the specific
architectural pattern of microservices. We distinguish microservices from general
applications, identify the tensions when designing an ecosystem, and relate these to
the specific case of education.

We then turn to the ethical perspective, reviewing platform lock-in, transparency,
accountability, bias, and equity. Our ethical analysis also leads to a recommenda-
tion of microservices. Finally, to complete the context for the study that follows,
which focuses on the specific example of automating formative feedback, we review
automation efforts in that area.

2.1. Historical context of systems engineering and modularity

Systems engineering considers complex systems as modules that communicate
through interfaces, with the inner workings of modules ‘hidden’ from the separate
modules that can be independently replaced. In the early industrial revolution Whit-
worth pioneered the ideal to “exchange the one [part] for the other” (Whitworth,
1858)[p.12], a concept credited with driving American industrialisation thereafter
(Hounshell, 1984). Generalising the concept of modules, for example to complex
biological systems, is the idea that

in a nearly decomposable system, the short-run behaviour of each of the
component subsystems is approximately independent of the short-run
behaviour of the other components. (Simon, 1962)[p.474]

In both nature and engineering, modular sub-systems can change on a short timescale,
without needing the wider system to change at such pace. The concept of separate
timescales of change for modules within a system is important for innovation in Al,
because technologies and practices around Al are changing rapidly in relation to the
wider systems of which they are a part. Modularity is therefore key to sustaining
innovation.

Software engineering embraces the concept of modularity, which emphasises that
modules should hide ‘decisions that are likely to change’ (Parnas, 1972), a concept
that remains important today (Garlan et al., 1993; Perry and Wolf, 1992; Bass,
2012).

From an economic and organisation perspective Baldwin and Clark (2000) showed
how modularity facilitates innovation through parallel development, specialisation,
competitive entry at the module level, and platform ecosystems. These findings chal-
lenge us to ask the extent to which modules within a software application, platform,
or ecosystem should be independent, to facilitate these mechanisms that enhance
innovation. Decentralising innovation to separate modules is common in software
development (Sullivan et al., 2001). In the case of education software, to what extent
should modules that automate pedagogical judgement be independent?

2.2. Critical analysis of modularity

Baldwin (2018) identified that independent modules benefit platform- rather
than step-orientated systems; learning management systems (LMS) fit the ‘platform’
pattern. Baldwin (2018) also emphasised that the pace of change of technology has
an important influence on the appropriate architecture. For the current rapid growth
and change of Al technologies, isolation to enable innovation is essential.

The limitations of the analysis of Baldwin (2018) and Baldwin and Clark (2000)
are that they study single-platform systems, whereas in education there are many
platforms, forming an eco-system. Jacobides et al. (2018) distinguished eco-systems
by the number of platforms, ‘n’, including single, low-n, and high-n. As consumers
we recognise the Android and iOS platforms on our devices as a low-n system,
whereas education is a high-n ecosystem with many virtual learning environments
(VLE) or Learning Management Systems (LMS), and the applications (‘comple-
menters’) that can be deployed through those platforms.

In a multi-platform eco-system, complementers, who develop modules for one
or more of the platforms, have a dilemma whether to ‘multi-home’ their module,
i.e. whether to engineer their modules to work within (to ‘complement’) more than
one platform. As examples of multi-homing, the Microsoft Office suite is a multi-
homed complement to consumer operating systems, and in education there are many
applications that connect to LMSs.

A sector-wide perspective of education invites the question: under which condi-
tions is ‘high-n multi-platform’ appropriate? In other words, is the current situation
good? Jacobides et al. (2018) refine this question to three aspects:

(1) Are complementarities modular, as per Baldwin and Clark (2000)?
(2) Is supermodularity low (no strong advantage in tight integration)?
(3) Are multi-homing costs low?

If true in all cases then high-n platforms are technically appropriate. Are these
conditions met in education?

On question (1) we assume here that the reader agrees that the different processes
in education can be modularised in the sense of Parnas (1972), and that this is
desirable in the sense of Baldwin and Clark (2000) because of the complexity of
the system. On question (2) we note that some modules (‘applications’), such as
STACK, integrate tightly into a particular VLE (Moodle in this case), suggesting
some supermodularity. On question (3) there are non-negligible multi-homing costs.
The LTI system is an example of reducing multi-homing costs, subject to the (non-
zero) cost of engineering LTI connectivity into the application.

The technical grounds for a high-n multi-platform system are, therefore, met to
some extent but not entirely. The sector is not best placed to channel innovation in
Al for pedagogical judgement.

Should we improve the conditions to facilitate modularity and multi-homing, or
should we reduce the number of platforms? The latter is not an option in practice,
so we should seek the former. This means we should (1) build modular systems;
(2) beware of supermodularity as not conducive to innovation; and (3) decrease
multi-homing costs.

2.3. Interoperability

A key characteristic of modules that can reduce multi-homing costs is interoper-
ability. For example, [oT ecosystems are also high-n multi-platform, and in that sec-
tor interoperability facilitates many independent platforms, products, applications,
and services that can work as an eco-system (Broring et al., 2017). Interoperability
is distinct from modularity in the sense that modules become not just alternative
options, but directly substitutable for each other.

As an example in education, there are multiple modules (applications) that con-
nect to LMSs via LTI to provide assessment and feedback utilities. There is choice
between these modules. For example, ‘Mobius’ provides assignments that can be
graded, with grades returned to the LMS, and so does Turnitin. Both applications
connect via LTI and both return grades to the LMS. They can innovate indepen-
dently, and the most desirable can be chosen by the educational institution, without
changing their LMS. Modularity is present, and the benefits are realised. However,
in this example these modules are not ‘interoperable’ — they cannot be substituted
for each other. They are configured differently. There is friction in swapping one
for the other.

Palfrey and Gasser (2012) stress interoperability as replace-ability: not just the
ability to connect, but the ability to substitute or exit. Palfrey and Gasser (2012)
provide a holistic perspective of the technology, data, social, and organisational
layers (the ‘cake’ model) of interoperability summarised in Table 1.

Layer Benefits Risks

Technology Innovation, lower barriers, diverse Fragility, performance, security,
participants, adaptability tight integration

Data Sharing, analysis, aggregation Loss of context; misuse of data

Social Accessibility, collaboration Loss of context, local control

Organisational Policy alignment, market access, sovereignty, internal norms
regulatory consistency, democratic

Table 1: The cake model of Palfrey and Gasser (2012) showing the benefits and risks of interoper-
ability.

Interoperability should only be considered if the benefits are valuable, and if so
the risks need to be managed. An insightful example is financial payments, which
are interoperable despite the security and data risks; in this case the benefits were
worth managing the risks. The benefits of interoperability are aligned with those
of modularity, the distinction being that interoperability enhances both the benefits
and the risks.

In education the broad, diverse, and complex nature of the problems of au-
tomation in pedagogical judgement requires innovation from diverse participants,
adaptability to local contexts, collaboration across the sector, and to operate in a
high-n, multiplatform ecosystem. These are arguments for interoperability, which if
followed implies that the risks must be managed and Table 1 provides guidance for
developing interoperability.

2.4. Microservices
So far we have honed our arguments on interoperable modules developed by com-
plementers. One potential architectural pattern to implement interoperable modules

Micro Micro
service service szr‘\fir:e
c D

& 5

service

Platform 1 Platform 2 Platform n
- Web Ul Module
s ot @ = : 9-"§”
B e Web Ul - | -
| - ' _
!> Mobile App - .
-
9- - - C O Service| [Service Web Ul
-
| T

Figure 1: A conceptual sketch of a high-n, multiplatform ecosystem, with external microservices.
The internal architecture of the platforms is not constrained hence various options are portrayed;
the key point is the large number of independent, external microservices that can each be called
by many platforms.

is called Microservices (Lewis and Fowler, 2014). The distinction between a ‘mi-
croservice’ and a more general modular, interoperable ‘application’ is a focus on
small, granular functionality.

For example, applications that connect to an LMS via LTI typically have a range
of functions, leading to broad and complex interactions between the platform and
the application that connects to it. In contrast, microservices specialise in smaller,
more granular tasks. Microservices deploy and execute independently, for example
not sharing memory or compute resources with other parts of a system, and are
updated separately. Many microservices are used via a simple HT'TP request and
response. Although not conceptually new, the growth of microservices in the last 10
years has been facilitated by container technology, cloud computing, and continuous
integration/deployment operational approaches (Wang et al., 2021).

A conceptual sketch of what a microservice architecture might look like in a
high-n multi-platform ecosystem like education is given in Figure 1. A large number
of microservices is available and can be used by multiple platforms; microservices
can also call other services (see also Broring et al., 2017).

Following Lewis and Fowler (2014) and the review of Dragoni et al. (2017) we
can identify key benefits and risks in using microservices. Microservices are ap-
propriate when key measures of independence are required, namely development,
deployment (memory and compute), scaling, and technical stacks. Additionally, the
need for modularity, interoperability, and granular functions, are reasons to consider
microservices. The granularity ensures the principle of innovation through modu-
larity, freeing functions to be developed independently depending on the expertise
required.

Other requirements to justify microservices include the feasibility (or acceptabil-
ity) of message-based and higher-latency interactions.

Reasons not to use microservices include the overhead of communication be-
tween teams, the overall system complexity, potential immaturity of the system,
error tracking and management when issues arise, and friction in deployment due

to the complexity of system-wide testing and the multi-stage nature of system-wide
updates. A tabulated trade-off for microservices is included in Table B.6 in the
Appendix.

In summary, a monolith architecture works well as a default, except where it is
critical that services can be developed and deployed independently of one another.

In this paper, we argue that educational software involving automated pedagog-
ical judgement is just such a case, for which a microservice architecture is appro-
priate. In addition to the balance of issues summarised in Table B.6, we recall our
review that education software requires a low cost of multi-homing and granular, in-
dependent tasks functions. The microservice architecture, with interaction through
messaging, is ideal to meet this need.

The arguments so far have focused on technical aspects, and we will now consider
the ethics of automating pedagogical judgement.

2.5. FEthical aspects of pedagogical judgements

The distinction between pedagogical judgements and administrative processes
was made by Selwyn et al. (2023), who advocated for resistance to automation of
the role played by the teacher. Nevertheless, powered by the revolution in large
language models, a rapid rise in empirical studies of LLMs in education has been
reported, highlighting

“GenAl’s role as an assistant and facilitator in learning support, a sub-
ject expert and instructional designer in teaching support, and its con-
tributions to diverse feedback methods and emerging assessment oppor-
tunities.” (Zhang et al., 2024)

Pedagogic judgements are now, and quite suddenly, being automated on a much
wider basis than in the past. We review the ethics of automatic pedagogical judge-
ment from the perspective of platform lock-in, transparency, accountability, bias and
equity of access.

Platform lock-in describes a situation where institutions are unlikely to change
platforms. In addition to the multi-year timescale to procure a platform and inte-
grate it into organisational workflows, the effect of ‘generative entrenchment’ refers
to the decreased cost of future investments in the platform that has already been
integrated, due to compatibility (Pangrazio et al., 2023).

As pedagogic judgements become part of platform offerings, platform lock-in
risks becoming pedagogy lock-in — a new, and major, ethical issue. We argue
that architectures that break this link create a stronger ethical framework for the
automation of pedagogical judgement. As a minimum, such automation should not
be inherently governed by the platform and should be configured by teachers or
by separate applications running on the platform. Microservices, while an extreme
version of this modularity, would facilitate breaking this chain.

Transparency is a clear issue in debates around ethics in Al (Holmes et al., 2022;
Klimova et al., 2023; Fu and Weng, 2024). If a pedagogic judgement is automated,
it should be clear what process was followed. The black-box nature of neural-
network-based technologies conspire against full transparency, but even if processes
themselves are opaque, the patterns of outputs can be made transparent.

7

Model cards (Mitchell et al., 2019) can contribute to transparency, which would
require education-specific tests. Tests such as the ‘benchmark of pedagogical knowl-
edge’ by Lelievre et al. (2025) show an early example, however the tests require
more nuance around the contested nature of pedagogy and the importance of con-
text. The key point for the present work is that incentives to provide model cards,
and to test transparently and according to the needs of the community, are not
aligned if automated pedagogical judgements are within a platform. For example,
if testing of an automated process shows bad results, will platforms transparently
communicate the result? Separating the processes is essential for healthy incentives
to report on automation processes transparently. Interoperable microservices would
enhance competition, increase the agency of the educator community, and be more
conducive to transparency.

Accountability is integral to Al ethics debates (Holmes et al., 2022; Klimova et al.,
2023; Fu and Weng, 2024). Accountability refers to the responsibility that educators
take for the experience of the students, including the ramifications of automated
pedagogical judgements. If the educator cannot freely choose from different ways
to automate pedagogical judgement, and expectations are put on the educator to
use the available services, then both the agency and accountability of the educator
are at risk. Choice via interoperable microservices opens the possibility of greater
accountability.

The arguments so far on lock-in, transparency, and accountability are all grounded
in the desire for agency within education institutions to choose how (if at all) peda-
gogical judgements are automated. The element of choice is also essential to debates
around issues of bias, equity, and power. All automated processes contain bias and
the knock-on effects can be unforeseen (Klimova et al., 2023). Bias is a complex eth-
ical area, for example it is common to state that ‘no bias’ is a principle of ethical Al
(Klimova et al., 2023), which betrays a lack of understanding that training models
on data is the practice of introducing bias — bias towards the data set. Within the
scope of the present article it is sufficient to say that choice and educator agency
are a pre-requisite to understanding and managing bias. Microservices facilitate the
choice and encourage transparency — but do not inherently address the bias.

FEquity as the availability of technology to all institutions is a significant issue
(Pangrazio et al. (2023)). Microservices break the chain of platforms and services,
so that inaccessibility of platforms (e.g. due to cost or organisational barriers) does
not create a barrier to services available on the platform. Equity can play out
in nuanced ways, for example if the most advanced, or high quality, automated
pedagogical judgements require significant investments by educational institutions
to tune to their context (for example iterative prompt engineering), then institutions
with more resource will develop higher quality services (Buckingham Shum et al.,
2023).

To the extent that institutions want to share the fruits of their investments, they
can make services available for other institutions to improve equity of access. While
this argument is true of all educational technology in principle, the point made here
relates to the low barrier to sharing when interoperable microservices are used in an
eco-system (Fullan and Langworthy, 2014; Reigeluth et al., 2013; Omiyad Network,
2019; Otto and Kerres, 2022; Gottschalk and Weise, 2023).

The scale of application of educational technology also affects its quality. Larger
scale ensures a more diverse user base for testing, and a larger resource for devel-
opment. A common pattern in the literature is to test a single cohort local to the
developers (Deeva et al., 2021; Ma et al., 2014; VanLehn, 2011). Interoperable mi-
croservices open the possibility of much larger testing sets, for example millions of
participants.

To summarise, microservices foster a more ethical ecosystem by separating ser-
vices from platforms, enabling educator choice and agency, enhancing transparency,
promoting equity of access, and increasing quality.

2.6. Automated formative feedback

Following a review of the technical and ethical perspectives, we turn our attention
to a specific type of judgement to facilitate a more concrete, practical analysis later
in the paper. Of the many forms of pedagogic judgement that could be automated,
we use automated formative feedback as a case study in this article. In this Section
we briefly summarise research on automated formative feedback, which is defined
(Black and Wiliam, 1998; Sadler, 1989) as informing a student on:

e A goal (‘Where am I going?’)
e Progress towards the goal (‘Where am 177)
e How to progress toward the goal (‘Where shall I go next?’).

Formative feedback is a prime candidate for the automation of pedagogic judge-
ments because it is known as a high impact intervention (Hattie and Timperley,
2007; Hattie, 2009), but there are resource constraints in practice that limit its im-
pact. For example, in schools teachers spend time outside the classroom generating
formative feedback (Merrimack College, 2023; Allen et al., 2021; Airasian, 1997;
Burgess et al., 2023; Butt and Lance, 2005; Henderson et al., 2019) and in univer-
sity formative feedback can be mistargeted due to its association with summative
assessment (Winstone and Boud, 2022) and is often not given for its purely forma-
tive value. A focus on formative feedback for early automation is also practical due
to the low stakes and high tolerance for risk if there are errors in the feedback.

Empirical guides to good feedback are reviewed by Shute (2008), and theoreti-
cal frameworks reviewed by Panadero and Lipnevich (2022). Some of the existing
efforts to automate feedback (formative and/or summative) are listed in Table 2.
The hundreds of systems, even pre-ChatGPT, highlight the ‘high-n” nature of the
automated formative feedback ecosystem.

The trend in studies of automated feedback was to develop an independent ap-
plication or platform, that does not offer interoperability pedagogical judgement
algorithms. For example scripts in Maple work in Mobius and can be shared but
only within that platform; similarly scripts in Maxima work in STACK and can
be shared but only within that application. One exception is Google’s LearnLM
(Jurenka et al., 2024) which is now embedded in Google Gemini and is generally
accessible via an API. At the time of writing, Google’s competitors were similar ed-
ucational modes for their LLMs. However, in cases like LearnLM in Gemini, when
a general model is available, prompting (context engineering) will still be part of

9

Table 2: Examples of over 200 automated feedback systems

Type Examples

Automated STACK (Sangwin, 2007, 2013), Lambda Feedback (Johnson
assessment system et al., 2025), Artemis (Krusche and Seitz, 2018), JACK

(AAS) (Goedicke et al., 2008), MATLAB Grader (Tejado et al., 2023),

and 109 Systems listed by Deeva et al. (2021).

Intelligent tutoring Carnegie CLEAR tutor, ASSISTments (Heffernan and

68 systems in Graesser et al. (2012)

systems (ITS) Heffernan, 2014), 22 systems reviewed by (Ma et al., 2014), and

Writing assistants OnTask & SRES, ECoach, AcaWriter (Buckingham Shum
et al., 2023), and six systems in Nunes et al. (2022).

by Jurenka et al. (2024).

Al assistant Khanmigo (Shetye, 2024), seven systems reviewed by Labadze
et al. (2023), Google LearnLLM and 43 other systems reviewed

the automation process, and the prompting will be contextual. Users in a similar
context could benefit from access to the same prompts, but may want to switch the
underlying model while keeping the prompts.

3. Case studies

In this Section, we present an exemplar of a deployed and tested educational
platform that employs microservices to make pedagogical judgements. We focus on
a specific case where formative feedback is provided by a microservice. By focus-
ing on a specific application, we illustrate how microservices can be used to make
pedagogical judgements; the reader can then extrapolate a similar use for other
applications such as content generation, summative assessment, and so on.

We present [platform name|, which is a specialist learning management system
(LMS) for self-study, providing automated formative feedback. All feedback is pro-
vided by interoperable microservices. We present the three separate case studies
using the platform, in each case highlighting the evidence to support the arguments
made in the background and literature review. All microservices use publically avail-
able code [reference removed for double blind review]. The first Case study focuses
on the scale of deployment and the development of microservices. The next two Case
studies, with contrasting applications in university mathematics and school English
language, provide deeper insight into the pedagogical judgements being automated,
and the concrete ways in which microservices facilitated innovation and supported
ethical approaches.

3.1. Description of the [platform name] application

The platform is web-based for users. The base of the application is a content
management system, where teachers curate study materials and publish them to
students. Content management is based on markdown, with mathematics, images,
and videos embedded. Secure login and role-based access allows teachers, adminis-
trators, and students the appropriate functionality. Figure 2 shows how a teacher
curates automation on the platform, selecting and configuring one of the available

10

INPUT

Q2.1(a) Response Area 2: Evaluation function settings x

EVALUATE

symbolicEqual

MULTIPLE_CHOICE compareExpressions

O option One g issimilar3
& compareSets
O option Two symbolicEqualDev

TEST

comparePhysicalQuantities

EXPRESSION
0

O strict_syntax (boolean)

elementary_functions (boolean)

vaw sen@

< PREVIOUS NEXT > cance. [NV

Figure 2: Two key steps for the teacher. Left: selecting an interactive component. Right: selecting
and configuring a microservice.

E S B 2z
Type Al Scan @ . X & ¥

© Incorrect
Interpreted as:
The form of your expression looks

2 2
R u”
P right, but there's a missing factor.

Figure 3: Student experience: a handwritten expression is entered, and timely, formative feedback
is provided — via a microservice.

11

VPC

Private Subnet
Public Subnet a

ECS @
—_——>

/—> App Load Balancer (ALB 1) @¢——— nest.js DB '

Browser — www — Internet Gateway ——— ALB 2 (in future)

X} ALB 3 (in future)

=

Evaluation functions

Figure 4: Software architecture for [platform name], from left-to-right: web requests are managed
by a load balancer that routes to a server instance, run using nest.js, using Amazon Elastic Con-
tainer Service (ECS). Within a private subnet, the Database (DB) is built on PostgreSQL and
Prisma. The entire application is in a virtual private cloud (VPC). When automated feedback is
required, an external ‘Evaluation function’ is called as a microservice, using an HTTP request.

microservices. Note that no code is required by the teacher. Figure 3 shows an
example of the student view, receiving timely, automated, specific, feedback that
requires pedagogic judgement.

The platform was developed from the outset with emphasis on microservices
for pedagogic judgment. The cloud native architecture follows a traditional struc-
ture, with a web-client, server, and database. The client and server are built in
TypeScript using ‘next.js’ and ‘nest.js’ libraries, respectively. The database is built
in PostgreSQL, managed by Prisma, with APIs using GraphQL. The application
is built in OCI containers and deployed using continuous deployment/continuous
integration on AWS. Horizontal scaling is incorporated with AWS Fargate.

The differentiating feature of the application is the provision of automated forma-
tive feedback on student responses to study tasks. The application has no internal
mechanism to make pedagogical judgements or generate formative feedback. All
feedback is provided by external microservices, as illustrated in Figure 4, called by
an HTTP request.

Currently ‘Evaluation functions’ are the main type of microservice in use, which
evaluates a response from a student and provides feedback. ‘Chat’ functions are
also called as microservices and are in growing use but are not detailed here for
brevity. Future microservices may include, for example, data analytics processes
such as providing high-level feedback to students or predictive analytics for staff;
or students. All these external services involve pedagogical judgement, and are
therefore outside the functionality of the core application.

To illustrate the operation of the microservices, we show a simple example eval-
uation of a symbolic (mathematical) expression. An HTTP request is used to pass
contextual data to the microservice and to receive a response. An example use of a
microservice is given below as a curl request:

12

1

3

1

5

curl --request GET \

--url https://XX.amazonaws.com/default/symbolicEqual \
--header 'Content-Type: application/json' \

--header 'command: eval' \

--data '{"respomnse": "x + x + y - y", "answer": "2xx"}'

An example output is as follows, showing only the ‘result’ component of the JSON
object that is returned:

"is_correct": true,
"feedback": "",

In the example the request is to compare a student response (x +x +y —y) to a
reference answer (2xx). The microservice symbolicEqual uses a Computer Algebra
System (CAS, in this case SymPy) and in this example returned a validation metric
stating that the response is correct; no further feedback was provided.

The key characteristics of the microservice in this simple example are:

e Contestable: the output involves pedagogical judgement.

e Technology agnostic: no pre-requisites on hardware or run time.

e Interoperable: can be substituted; can be called from any platform.
e Granular: the function is small in scope.

The correctness of the student response (x +x +y —y) is contestable. There are
contexts in which the response is not considered correct. The teacher will need to
understand the functionality of the symbolicEqual service and decide whether it is
appropriate to their context.

The HTTP request is not contingent on the run time (in this case Python) or
hardware configuration (in this case a cloud function, AWS Lambda). As tech-
nologies evolve, the microservices can capitalise. In mathematics, the use of Lean
Theorem Prover or Wolfram Language may be fruitful. In natural language, while
further external calls to services such as from OpenAl or Google can be made, an
alternative future could be that models become smaller and can be fine-tuned and
deployed on smaller rented or owned GPU hardware.

The interoperability of the microservice is evident in the example that follows.
The symbolicEqual service evolved from a pilot programme but can now be replaced
by a next generation service, compareExpressions. With the same HTTP request
but to a different address, the new service gives the following output:

"is_correct": true,
"feedback": "The response can be simplified further.",
"tags": ["response = answer_TRUE", "response =

answer _SAME_SYMBOLS_FALSE"]

The new microservice is distinguished by providing a feedback string, and ‘tags’
to help with later analytics that will drive further improvements to the service. It is

13

[Platform Name] Microservice Microservice LLM

compareExpressions evaluateProof API
Student .
—~ Opens Question -
— Provides Question
- . T
: Submits Answer i
o "R+ x4+ y -y
> Sends Answer :
"k X by = y" -

Y

Returns Feedback
"Correct"

Provides Feedback | | vrg response can be simplified further!

to Student e — . - D T]
Edits and2 Resubmits Sends Resubmitted Answer
naEyh " "
(- > 2ry o

Presents Answer
"Correct"

Returns "Correct"

Opens Next Question

Provides Question

Submits Answer Sends Answer to Microservice T Submits Prompt with

> Student Answer
Returns LLM
Retums Feedback Generated Feedback
Provides Feedbac e ———==-= LU S ST T T T TTT o

€ - — = - = - —

= e |
1 H

Figure 5: An example interaction between a student using an LMS, and external microservices
providing feedback on various types of questions, including comparing mathematical expressions,
and providing feedback on mathematical proofs.

contestable whether the feedback provided is higher quality; for example, teachers
may not want to provide such a strong hint or may consider the hint as not strong
enough — these are pedagogical judgements. The interoperability of the services
allows the teacher to choose or develop an alternative.

An example sequence of how the student interacts with the microservices, via
an LMS, can be found in Figure 5. First, the student submits their answer to the
LMS, which in turn sends their submission to the microservice compareExpresions,
which provides the feedback that “The response can be simplified further.”. The
student then submits a revised version, and in this case, the answer is correct, and
no further feedback is provided. Finally, the student loads a different task which
requires a proof; they submit a proof to evaluateProof, then uses a further call to
an LLM to generate feedback, which is passed back via this same evaluateProof
microservice to the student in the LMS (we discuss evaluateProof furher in Section
3.3).

3.2. Case study 1: deployment across an institution

An overall study of institution-wide adoption of the platform at [university name]
is provided, emphasising the usage patterns, scalability and flexibility of its use.
This study is primarily quantitative and is used to illustrate that the microservice
architecture is feasible at scale.

14

The [platform name] was piloted in 2021, deployed to a single cohort of 180
engineering undergraduate students in 2022, and gradually grew in adoption un-
til 2025 when its deployment covered four faculties, 15 departments, 60 modules,
100 teachers, 3,000 active users (students), 13,000 questions, and approximately 1
million formative feedback events per academic year. Predominant usage was in
departments of engineering and physical science at one institution, but it was also
used in medicine, business, English, including in multiple universities and schools.

Each module was administered by an independent ‘module leader’ (academic
staff), who curated their self-study content which was akin to a ‘tutorial sheet’
(UK) or ‘Problem Set” (US). As is common in UK universities, these Problem Sets
were considered a necessary part of the course of study. The Problem Sets, although
expected to be completed in preparation for a summative exam, were not directly
summatively assessed.

Teachers, with support from student partners, produced or imported content,
edited it to ensure it was accurate and presentable, and then configured automated
formative feedback by selecting a microservice and defining the relevant contextual
parameters (such as reference answers, accuracy requirements, or acceptable sym-
bols).

Teachers chose freely from the available microservices, including the option to
develop their own microservices. The results section will show which services became
available, who developed them, and how they were deployed.

Microservices created to launch the platform are listed in Table 3. New services
created independently are listed in Table 4 showing by example that the creation
of microservices by independent parties is feasible. The number of services (22) is
small compared to the number of calls (1.5 million), and the number of educational
tasks (approximately 13,000), showing that investing in a microservice is not just
economically feasible but can have a large pedagogic impact across a multitude of
tasks.

Educational subjects on the platform were predominantly engineering and physi-
cal sciences, but also included mathematics, medicine, business, and English. Usage
was predominantly in one institution, but pilots in multiple universities and schools
are also underway. Those arrangements are nascent and are not reported here.

In the period 2022-2025 microservices were called 1.5 million times. Due to the
exponential growth of the platform usage, most of these calls (more than half) were
in the academic year 2024-25. The leading microservices in quantity of calls are
listed in Table 5. The leading services (48%) are for symbolic mathematical ex-
pressions (symbolicEqual, arraysymbolicEqual, comparePhysicalQuantities, or
compareExpresions). The new function compareExpresions succeeded symbolicEqual
and comparePhysicalQuantities, but the latter are still used in legacy content.
The next most common service (32%) is for numerical quantities with tolerances
(isSimilar), and the next (17%) is for multiple choice questions. Those leading
services comprise 97% of calls.

The scale and scalability of the microservices are illustrated by an analysis of the
compareExpresions service in Figure 6. In Figure 6a the invocations (service calls)
per hour show over 400 occasions with over 1,000 invocations per hour implying calls
every second at times. Figure 6b shows how often the rate of invocations required

15

Table 3: Microservices created with the platform. Services are built in Python. These services are
independent, but were created by the same team that created the platform.

Service Technical summary

Boiler plates Non-deployed, public boiler plates that can be cloned and used to build
functions in Python, Lean, Wolfram.

survey Returns ‘Thank you, your response has been logged’, to enable the
platform to be used for surveys.

isExactEqual Compares to strings for exact equality.

arrayEqual Recursively compares each element of an array, invokes exactEqual
(service) to execute the comparison. Used for multiple choice.

isSimilar Compares two numbers for equality within tolerances provided as
parameters.

symbolicEqual Parses expressions and checks equality with SymPy.

arraysymbolicEqual Recursively compares each element of an array, invokes symbolicEqual
to execute the comparison.

Table 4: Notable microservices created with the platform. Services are built in Python. These
services are independent, but were created by the same team who created the platform.

Service Technical summary Originator
compareExpresions Second generation comparison of Created by a specialist researcher
symbolic expressions. Uses without access to the application
SymPy, mostly used for equality and no software engineering skills.
but also for syntax. Forked from symbolicEqual.
buckinghamPiTheorem Validates groups in dimensional Taken by a researcher, from an
analysis. Applies to fluid algorithm used by a teacher in
mechanics. Based on Lundengard | another platform, and generalised
et al (2023). as a microservice.
compareBoolean Parses logical expressions to Created by a student partner who
compare truth tables. Uses was assisting an academic.
SymPy and a custom parser.
Applies to basic electronics and
computing.
evaluateProof Feedback on mathematical proofs | Created independently by a group
written in natural language. Uses | of mathematicians and later
LLMs. connected to [platform name].
See Section 3.3.
GCSEenglish Feedback on essays for GCSE Created independently by other
English (a UK qualification at age | organisations and connected to
16). [platform name]. See Section 3.4.
eduVision Vision processing to check lab Created independently by a
hardware such as electronics third-party team. Still in
assembly. development.
Table 5: Quantity of calls for the microservices
Service Number of calls | Proportion
isSimilar 469k 32%
arrayEqual 254k 17%
symbolicEqual 235k 16%
compareExpresions 229k 16%
arraysymbolicEqual 128k 8.7%
comparePhysicalQuantities 103k 7.0%
isExactEqual 37k 2.5%
Other 6.2k 0.4%

16

200 G00

400
300
| =

200
100
0

o o

=]

=

Maximum invocations per hour Maximum concurrent executions per hour

500

AQ0D
= 300
200

C--.—*Nr"’:-':l‘u’!lr.l’.‘-h:!..mﬂ-ﬂl
—
T4

200
o0 [
400 N
soo [
s00 [

700 N
|

soo [

1000

1000

(a) (b)

Figure 6: Scale and scaling of the microservice compareExpresions for 10th Oct ‘24 to 24th Dec
’24 (2000 hours). Invocations (a) shows the number of calls, and concurrent executions (b) shows
when multiple compute instances were required due to scale with demand. Concurrent executions
implies a process had not finished before another one was required.

concurrent execution of the service to handle the traffic. Concurrent executions were
often required, for example five or more concurrent executions were required on 430
occasions in three months (21% of time when split by the hour), and 9 or more were
required on 27 occasions (1.3%). In contrast, there were 181 hours out of 2,000 (9%)
where no executions were required.

The results on the scale and scalability illustrate microservices for pedagogical
judgement at a scale much larger than a single class or cohort and illustrate the
feasibility of the architecture advocated in this article. Hardware arrangements
for the microservices — in this case AWS Lambda — scaled independently of the
application, which is one of the arguments for microservices.

Time scales for development of microservices can be reported anecdotally. An
illustrative example is the niche function compareBoolean, for logic in electronics,
which was developed by a student partner over a few weeks during a summer place-
ment. The service was called 1,044 times in the subsequent academic year, showing
that it was used by a single cohort. The service is ready to be used on a larger scale —
or to be updated or replaced in future. Statistical data on time scales for innovation
across the ecosystem is not available due to the limited number of services currently
available. A more qualitative picture can be gained from the results of case studies
2 and 3.

The predominance, in terms of usage, of services for symbolic mathematics and
numerical answers reflects the origins of the platform as a STEM education platform,
before the emergence of large language models. Within the remaining 3% of calls
are pilots which are yet to be used on large scale but are pioneering new methods
of feedback generation at a small scale. Those pilots are notable for fulfilling the
needs articulated in the first part of the article, and in the next two sections we
study those pilots in more detail. It is notable at this point, however, that the large
scale use of compareExpresions is a validation of the microservice architecture in
that the service was developed externally to the platform, on a shorter timescale,

17

and introduced interoperably to replace the symbolicEqual function.

One key feature of the platform and microservice system that was deployed was
the ‘no code’ paradigm, in which teacher-users select and configure microservices,
but do not write the code. The parametric configuration of a service is part of
the teacher agency in the pedagogical judgements that are made. This can be, for
example, defining which symbols are equivalent. Such nuances are important. In
the case of symbolic expressions in physical sciences, in one context two symbols
can be equivalent (such as upper or lower case letters), but in other contexts the
difference is important.

To summarise Case Study 1 on the deployment of the platform, it shows a di-
versity of usage requiring different pedagogical judgements. Some of the diversity
is evident in the range of subjects that are studied on the platform, and others in
the types of microservices developed and the specialist knowledge required (the next
two case studies will expand on this point). It is also notable that the microservices
use a different runtime (Python in this case, to make use of SymPy) to the platform
(Typescript/Javacript due to the web application), and that the scalability, interop-
erability, transparency, accountability, and accessibility of the microservices was all
due to the architecture employed. Finally, Case Study 1 shows that innovation in
microservices was feasible for independent parties and with a low barrier to entry.

3.8. Case study 2: application to proof in undergraduate mathematics

The second case study is in the use of Large Language Models to evaluate math-
ematical proofs drafted by undergraduate students in Mathematics. In an introduc-
tory module on rigorous proof of theorems from axioms, students are inducted into
a form of Mathematics that is novel to them after leaving school.

Students require feedback that relies on pedagogical judgement. Feedback an-
swers the question “Is my answer at the right level of rigour?”. Judgements on the
‘level of rigour’ are contextual and cultural.

Feedback is required on correctness, on reasoning and communication with stan-
dards based on the university Mathematics context. It should also identify errors,
clarify misconceptions and suggest improvements.

One way of providing feedback is to require formal proofs in a precise symbolic
language, and to employ theorem provers, as pioneered by Buzzard (2022). The syn-
tactic requirements of formal proofs present a challenge to novice mathematicians in
addition to the new mathematical ideas they must master; students often perceive
this syntactic challenge as less to do with mathematics than with programming (Ian-
none and Thoma, 2024). Further, symbolic-language proofs guarantee correctness
but not necessarily explanatory power (Hanna and Yan, 2021).

The pedagogical judgement used in the case study here was to consider symbolic-
language proving as a specialised field, and instead to focus on conventional math-
ematical proofs using a less strict, more readable syntax, and reasoning that is
rigorous but flexible.

The sequence of events in this case study was that initially a project to develop
automated feedback using ‘reasoning’ LLMs, such as OpenAl 03 and o4 series, was
initiated at [University name| independently of [platform name]. When the two
projects learned of each other, the LLM usage was connected to [platform name]

18

as a microservice without needing modifications, facilitating deployment to large
cohorts of students and timely delivery of the automated formative feedback.

To aid in evaluating the performance of the microservice, a grading step was
included in the algorithm but hidden from students, allowing quantitative evaluation
of the performance of the algorithm. The OpenAl o4-mini model was also used to
assess coverage and conciseness of LLM feedback, by extracting comments from
human markers and the LLM, and listing what appear to be essential elements
of the feedback; this list was then checked by a human expert. For each piece of
feedback, the Jaccard index, a measure of how precisely the actual feedback matches
the essentials, was then calculated.

Formative feedback was deployed in a module for 295 first year students, of whom
49 chose the option to trial the formative feedback. The number of submissions per
student varied by question, but was approximately double the number of students
depending on the question, suggesting that feedback commonly led to immediate
action. These results show that the system was successfully deployed with the use
of LLM-driven feedback on student attempts at proofs.

To illustrate results of from this pilot we use an exercise on the topic of Number
Systems is reproduced in Box 1.

Box 1: Example maths question

Show that every nonzero element in N has a unique predecessor in N assuming
only the Peano axioms and the definition of a predecessor: for z,y € N, z is
a predecessor of y if S(z) = y.

Without needing an understanding of the mathematics the reader can see that
the students is not asked for a mathematical expression but a sustained logical argu-
ment (in contrast with the type of task considered by the service compareExpresions).
An example student response is given in Box 2, which was given feedback by
evaluateProof reproduced in Box 3.

Box 2: Example student response

Let y be an arbitrary natural number such that y is not equal to 0. We want to
prove that there exists a unique natural number x such that S(x)=y. Because
of the map S from P2, there exists a predecessor x for y from S(x)=y. It must
also be unique because of P4, as for two distinct y1 and y2 in the natural
numbers, y1=S(x1) not equal to y2=S(x2) implies that x1 is not equal to x2.

Box 3: Example maths feedback

Your solution demonstrates a good understanding of the Peano axioms, par-
ticularly in identifying and applying the relevant axioms to the problem. Here
are some points for improvement:

1. Existence of Predecessor: You correctly mention that the map S from
P2 implies the existence of a predecessor for y. However, it would be beneficial

to explicitly state that since y # 0, by P3, there must exist some x such that
S(x) =y.

2. Uniqueness of Predecessor: Your explanation of uniqueness using P4
is mostly correct. You correctly identify that the injectivity of S ensures that
if S(z1) =y and S(z2) = y, then x; = x5. However, your explanation could
be clearer by explicitly stating that for any y, if there were two predecessors
x1 and xa, then S(z1) = S(z3) = y would imply x; = x5 due to injectivity.

3. Structure and Clarity: Your argument is generally well-structured, but
it could benefit from a more explicit step-by-step approach. Clearly delin-
eating the existence and uniqueness parts of your argument would enhance
clarity.

Overall, your solution is on the right track, but adding more explicit reasoning
and structure would strengthen your argument.

Without requiring mathematical knowledge, the reader can observe that the fine-
grained feedback reflects domain-specific expertise, which was enabled by the use
of an LLM, but also was curated by expert instructors — only possible by the low
barrier to entry in the microservice architecture.

The feedback contains key pedagogical judgement, aligning with the educational
context, requiring assumptions and deductions to be explicit. These are the relative
levels of rigour that are required — more than the student offered, but less than a
formal symbolic language.

Alignment between the pedagogical judgements shown by the LLM and those
of human experts was not perfect. Comparison of LLM feedback with blind con-
tributions by human experts showed that the LLM, despite attempts otherwise in
the prompting structure, were typically too long and less readable. Human experts
produced shorter, more targeted feedback. Jaccard scores comparing the feedback
showed that LLM feedback sometimes erred towards the non-essential. This critical
analysis is essential to making progress in the use of LLMs for automated formative
feedback.

The distribution of hidden marks from the LLM, compared to expert humans,
showed a tendency of the LLM to occupy a middle ground; it was rare to receive
robust criticism in LLM feedback, but also rare for LLM feedback to judge a response
as complete. In contrast human experts identified whether or not the proof was
considered ‘complete’.

The critical analysis on the length and relevance of feedback, and inability of
the LLM to commit to a position, are key research insights. The separation of
concerns to an externally developed microservice enables transparency of evaluation
and sharing these research insights. Responses have been on the time scale of weeks
or months, with projects in July 2024 informing deployments in September 2024;
and again in July 2025 informing September 2025. This experience supports the
claim that microservices facilitate rapid innovation.

The pilot development and deployment of evaluateProof required significant

20

resource that not all institution can commit. The public code, and platform-
independent microservice deployment, increases the accessibility and improves eq-
uity of access.

3.4. Case study 3: application to English language in a school

The third case study is in the use of Large Language Models to provide feedback
on essay drafts written by children in a UK school for a national English Language
qualification (GCSE) for students aged 14 to 16. This case study was a three-way
collaboration between the [platform name], a school, and an exam board.

The drive to provide automated formative feedback came from teachers at a
school looking to capitalise, in 2024, on the emerging capabilities of LLMs. Interest
from the exam board, [X], arose from the desire to provide constructive formative
feedback to schools that would aid in preparation for exams provided by the board.
The collaboration worked by the school providing manually created exemplar feed-
back, and the exam board iteratively developing prompts to provide feedback. The
school deployed the system to their students using [platform name], and selected
the microservice curated by the exam board. In depth research on the value of
the feedback, the student experience, and the teacher views, were gathered through
surveys and focus groups.

One example assessment question was provided to all participants:

Your local library is running a creative writing competition. The best
entries will be published in a booklet of creative writing. Write a descrip-
tion of a mysterious place, as suggested by this picture [accompanied by
a figure] (REDACTED, 2020)

Feedback was split into ‘technical accuracy’, and ‘content and organisation’, and
broken down into praise, targets, and encouragement. It’s notable that the decision
to structure feedback in this way is a pedagogical judgement that we would not
expect a software company to be competent to make. The judgement is made by
the experts and applied in the context.

Prompting used the OpenAl o4-mini (as of January 2025) and was developed
through iteration, including feedback from school teachers.

Deployment was to 121 students in years 9 and 10 (ages 13-14 and 14-15), in
classes of 10. A survey of students and a focus group with four teachers took place
in January 2025.

Ethical use of the pilot for research was managed by the internal review board
of [X].

In this case study a collaboration between teachers and exam boards iteratively
improved and then deployed LLM-based feedback to school students on their essays
in English language, and was deployed to two cohorts of students that received
automated formative feedback. In total 117 students submitted an essay, all of
whom also completed a survey which showed that 75% found the feedback helpful
and 73% understood everything in the feedback.

An example feedback message is given in Appendix A. The fact that teachers
and an exam board independently developed their feedback approach is evidence
that the barrier to entry to innovating is very low. The contrast of the expertise

21

required to give feedback to school-level students in English language, compared
to university-level mathematical proofs in Case Study 2, highlights how microser-
vices enable experts in a diverse range of niche areas to contribute to automating
pedagogical judgements.

Similar to Case Study 2, the use of LLMs in Case Study 3 shows the adaptability
of microservices to employ new technologies; in contrast, the platform itself did not
change significantly during the innovation, nor was it originally designed for LLMs.

Many elements of the feedback in Appendix A require pedagogical judgements.
A typical example is that a student’s phrases:

“paint a beautiful picture in the reader’s mind”

The adjective ‘beautiful’, and the inference of what is in the mind of the reader,
are subjective. These pedagogical judgements are contextual and contestable, jus-
tifying the focus on the ethics of automation.

The pilot development was a research project led by [X] which critically analysed
the feedback. Critical analysis after the pilot showed, for example, that teachers
praised the level of detail that was possible, relative to manual feedback. However,
teachers also criticised the length of responses relative to input by the student, and
misjudgements about the most important aspects of the essay to give feedback on.
Teachers suggested replicating their tone, personalising feedback based on student
abilities, and alternative formats to support the diversity of needs amongst students.
This type of critical analysis promotes improvements to the feedback, but requires
a level of transparency — including identifying weaknesses of the microservice — that
is feasible when the developers of the microservice are not invested in the platform
that delivers it. The point here is that the pilot showed evidence that transparency
is improved when the microservice is developed independently of the platform.

The algorithms used to produce the feedback are publicly available. Other or-
ganisations or platforms can call the microservice, or reuse the code, making it
accessible widely in the sector — including those organisations without the resource
to conduct the research and development.

3.5. Summary of results

Results were presented in three case studies. We can summarise the results as
providing evidence for the following:

e Lower barriers to entry by reducing services to the most granular level

e Decoupled services led to a diversity of experts contributing in different niche
areas

e Technology independence allowed each service to adapt to the problem at hand
and to adopt new technologies, such as computer algebra systems (CAS) and
LLMs.

We showed that microservices foster a more ethical ecosystem by separating
services from platforms:

22

e Educator choice and agency to change pedagogical judgements without chang-
ing the platform

e Incentives for transparency in the performance of the services

e Promote equity of access and higher quality by reducing barriers to sharing
resources and increasing the number of platforms that can call a service.

4. Discussion

The evidence presented in Section 3 is an exemplar of a platform that delegates
all automated pedagogical judgement to external microservices. This novel approach
supports the framework in Section 2 identifying the technical and ethical benefits
of a microservice ecosystem. The scale of deployment, diversity of pedagogical
applications, and architectural commitment to external microservices are novel and
provide a new direction for the education sector to foster ethical and innovative use
of Al in pedagogical judgment.

Part of the argument for granular microservices is the low-friction substitutability
of the services. We provided one such example in practice in Section 3, and we expect
more such substitutions as the ecosystem grows. When those cases materialise, they
will provide further validation of a microservice framework.

Open testing of microservices is key to the transparency and agency aspects of
our ethical arguments. The examples provided in Section 3 are all open source, and
we provided specific examples of open, critical testing and analyses of the exemplar
microservices (GCSEenglish and evaluateProof). While this evidence supports our
ethical arguments, the community will need further evidence that transparency is
enhanced by using external microservices in the ecosystem. To enable that evidence
on a broad scale, the sector needs to agree on the criteria with which automated
pedagogical judgements are evaluated. We recommend collaborative research to
that end, to provide guidance to innovators on transparent and critical testing of
services.

In Section 2 we categorised the education sector as high-n multiplatform. The
microservices presented in Sections 3-?77 are available for any platform, while the
evidence presented here is limited to a single platform. The full benefits of the low
cost of multi-homing across high-n platforms will be realised once multiple platforms
exist to call the same microservices. Such an expansion will be an important next
step in the development of a microservice ecosystem.

When multiple platforms use the same microservices, standards for service APIs
will be required. The research presented here motivates the development of API
standards. We recommend that the community collaborates on common approaches
to microservice API definitions, most likely using HTTP and a RESTful API.

Our critical review of microservice frameworks in Section 2 identified both ben-
efits and risks of microservices. The evidence in Section 77 supports the benefits of
microservices, but we must also consider the risks.

Key risks in microservices include the complexity of managing different services,
the friction that can emerge in deploying system-wide changes, and the reliability
issues that can result from such a decentralised architecture. At the scale of the

23

exemplar reported in this paper, such issues were negligible and managed through
conventional measures such as unit testing, automated deployments, and graceful
error management. As the ecosystem grows these risks will grow and will need more
attention.

Another key risk of microservices is in data sovereignty and security. The case
study of formative feedback, presented here, reduced the risk level by exchanging
granular and anonymous data. As the range of automated pedagogic judgement
by microservice grows, the ethics of data sharing will become more complex. It
remains to be seen at what point the extent of contextual data that is required by
the microservice will cross the philosophical line between a granular ‘service’” and
more comprehensive ‘application’. This issue will come in to focus as the ecosystem
develops.

The research presented here provides a foundation for the education sector to
sustainably innovate in the use of AI microservices for automated pedagogical judge-
ments. Developments on this foundation that will realise the potential of this ap-
proach, and are recommended as future research, are:

e Further development, deployment, and transparent testing of new niche mi-
croservices in formative feedback

e Exploration of other pedagogical judgements that can be automated by exter-
nal microservices, such as content generation, summative assessment, learning
analytics, and general/high-level study support.

e Community agreement on the criteria by which automated pedagogical judge-
ments should be evaluated, including testing methods and data sources for
testing

e Redevelopment or new development of LMS platforms to call external mi-
croservices, to leverage the microservices that will be developed

e C(ritical evaluation of the educational impact of these technologies in the con-
text of the framework we provide, namely on greater innovation, wider and
more equitable deployment, improved transparency and agency, and impact
on student experience and learning.

5. Conclusion

Microservices enable technical innovation and ethical behaviour in the develop-
ment of automated pedagogical judgements. Technical innovation is facilitated by
lowering the barrier to entry to the smallest possible task size, decoupling services to
invite the diversity of expertise needed in all the niche areas, and granting technol-
ogy independence to adapt to the varying applications and changing technologies.
Ethical behaviour is enhanced by educator agency in service choice, incentives for
transparency on the performance of the services, and facilitating highly interoperable
and scalable deployments that promote equity of access and higher quality.

The paper provides an overall framework for the sector to follow, based on a
theoretical perspective on software architecture and ethical discussions around Al

24

in education. Evidence to support these arguments comes from our exemplar de-
ployment of a new learning management system (LMS) for automated formative
feedback, in which all pedagogical judgements are sourced from external microser-
vices. The scale of deployment to thousands of monthly users, across a diversity of
subject areas, multiple institutions, and with one million annual service calls, shows
the feasibility of such a system.

Further validation of the theoretical arguments for microservices is provided in
the three case studies we presented. The first case study showed the scale of use of
microservices, including replacing a service interoperably with an upgraded service,
and scaling a service to thousands of invocations per hour more than 20% of the
time. The independent development, deployment, and scaling validate the argument
to separate microservices. Our examples included a microservices using a computer
algebra system in Python, which was independent of the Javascript-based platform
that called this external service.

In the second case study we showed examples of the use of Al to provide feedback
on mathematical proofs at university level, illustrating the nuances of the pedagogi-
cal judgement involved — in this case how much rigour is, or isn’t, required. These
examples show the level of expertise required to develop the automation algorithms,
the feasibility of completely independent practitioners developing microservices for
granular functions, and the transparency with which such independent services can
be critically analysed.

The third case study, using Al to provide feedback on English language essays
in schools, showed how two organisations, completely independent from each other
and from the platform that was used for deployment, could collaborate on the devel-
opment of a microservice that requires pedagogical judgement and a very different
expertise to the mathematics case study. The evidence of rapid and independent
innovation, and accountability for the pedagogic judgements, were clearly evident
in this case study too. All of the microservices presented here were open source
and therefore available both as source code and as a microservice available to other
platforms or users.

The study presented here shows how microservices can facilitate innovation and
an ethical approach to automated pedagogical judgements and we recommend this
approach to the community. Future developments should focus on multi-platform
usage, wider development of services, community engagement on testing criteria for
transparent evaluations, and agreement on the necessary standards for APIs that
will work across the ecosystem.

Acknowledgements

[Redacted for blind review]

References

Airasian, P.W., 1997. Classroom assessment. ERIC.

Allen, R., Benhenda, A., Jerrim, J., Sims, S., 2021. New evidence on teachers’
working hours in england. an empirical analysis of four datasets. Research Papers
in Education 36, 657-681. doi:10.1080/02671522.2020.1736616.

25

Baldwin, C.Y., 2018. Design rules, volume 2: how technology shapes organizations.
Harvard Business School Research Paper Series 19, 042.

Baldwin, C.Y., Clark, K.B., 2000. Design rules, Volume 1: The power of modularity.
MIT press.

Bass, L., 2012. Software architecture in practice. Pearson Education India.

Black, P., Wiliam, D., 1998. Assessment and classroom learning. Assessment in
Education: Principles, Policy & Practice 5, 7-74. doi:10.1080/0969595980050102.

Broring, A., Schmid, S., Schindhelm, C.K., Khelil, A., Ké&bisch, S., Kramer,
D., Le Phuoc, D., Mitic, J., Anicic, D., Teniente, E., 2017. Enabling
iot ecosystems through platform interoperability. IEEE Software 34, 54-61.
d0i:10.1109/ms.2017.2.

Buckingham Shum, S., Lim, L.A., Boud, D., Bearman, M., Dawson, P., 2023. A
comparative analysis of the skilled use of automated feedback tools through the

lens of teacher feedback literacy. International Journal of Educational Technology
in Higher Education 20, 40. doi:10.1186/s41239-023-00410-9.

Burgess, S., Rawal, S., Taylor, E.S., 2023. Teachers’ use of class time
and student achievement. Economics of Education Review 94, 102405.
d0i:10.1016/j.econedurev.2023.102405.

Butt, G., Lance, A., 2005. Secondary teacher workload and job satisfaction: Do
successful strategies for change exist? Educational Management Administration
& Leadership 33, 401-422. doi:10.1177/1741143205056304.

Buzzard, K., 2022. URL: https://talmo.uk/2022/slides/Buzzard.pdf. accessed
29th July 2025.

Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., De Weerdt, J., 2021.
A review of automated feedback systems for learners: Classification frame-
work, challenges and opportunities. Computers & Education 162, 104094.
d0i:10.1016/j.compedu.2020.104094.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L., 2017. Microservices: Yesterday, Today, and Tomorrow. Springer
International Publishing, Cham. pp. 195-216. doi:10.1007/978-3-319-67425-4_12.

Fu, Y., Weng, Z., 2024. Navigating the ethical terrain of ai in education: A system-
atic review on framing responsible human-centered ai practices. Computers and
Education: Artificial Intelligence 7, 100306.

Fullan, M., Langworthy, M., 2014. A rich seam: How new pedagogies find deep
learning .

Garlan, D., Shaw, M., et al., 1993. An introduction to software architecture. Ad-
vances in software engineering and knowledge engineering 1.

26

Goedicke, M., Striewe, M., Balz, M., 2008. Computer aided assessments and pro-
gramming exercises with JACK. Technical Report. ICB-Research Report.

Gottschalk, F., Weise, C., 2023. Digital equity and inclu-
sion in education: An overview of practice and policy in oecd
countries. URL: https://www.proquest.com/working-papers

/digital-equity-inclusion-education-overview
/docview/2849362537/se-2.

Graesser, A.C., Conley, M.W., Olney, A., 2012. Intelligent tutoring systems. APA
educational psychology handbook, Vol 3: Application to learning and teaching. ,
451-473d0i:10.1037/13275-018.

Hanna, G., Yan, X.K., 2021. Opening a discussion on teaching proof with auto-
mated theorem provers. For the Learning of Mathematics 41, pp. 42-46. URL:
https://www. jstor.org/stable/27091220.

Hattie, J., 2009. Visible Learning: A Synthesis of Over 800 Meta-analyses Relating
to Achievement. Routledge.

Hattie, J., Timperley, H., 2007. The power of feedback. Review of educational
research 77, 81-112.

Heffernan, N.T., Heffernan, C.L., 2014. The assistments ecosystem: Building a plat-
form that brings scientists and teachers together for minimally invasive research

on human learning and teaching. International Journal of Artificial Intelligence
in Education 24, 470-497. doi:10.1007/s40593-014-0024-x.

Henderson, M., Ryan, T., Phillips, M., 2019. The challenges of feedback in
higher education. Assessment & Evaluation in Higher Education 44, 1237-1252.
doi:10.1080/02602938.2019.1599815.

Hollingsworth, J., 1960. Automatic graders for programming classes. Communica-
tions of the ACM 3, 528-529. doi:10.1145/367415.367422.

Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum,
S.B., Santos, O.C., Rodrigo, M.T., Cukurova, M., Bittencourt, I.I., Koedinger,
K.R., 2022. Ethics of ai in education: Towards a community-wide frame-
work. International Journal of Artificial Intelligence in Education 32, 504-526.

doi:10.1007/s40593-021-00239-1.

Hounshell, D.; 1984. From the American system to mass production, 1800-1932:
The development of manufacturing technology in the United States. 4, Jhu Press.

Iannone, P., Thoma, A., 2024. Interactive theorem provers for university mathe-
matics: an exploratory study of students’ perceptions. International Journal of
Mathematical Education in Science and Technology 55, 2622-2644.

Jacobides, M.G., Cennamo, C., Gawer, A., 2018. Towards a theory of ecosystems.
Strategic Management Journal 39, 2255-2276. doi:10.1002/smj.2904.

27

Johnson, P., Fenton, J., Ramsden, P., Chatley, R., Ribera-Vicent, M., Karl, L., 2025.
Formative feedback on engineering self-study: Towards 1 million time per year per
cohort, in: 2025 IEEE Global Engineering Education Conference (EDUCON).

Jurenka, 1., Kunesch, M., McKee, K.R., Gillick, D., Zhu, S., Wiltberger, S., Phal,
S.M., Hermann, K., Kasenberg, D., Bhoopchand, A., et al., 2024. Towards respon-
sible development of generative ai for education: An evaluation-driven approach.
arXiv preprint arXiv:2407.12687 .

Klimova, B., Pikhart, M., Kacetl, J., 2023. Ethical issues of the use of ai-
driven mobile apps for education. Frontiers in Public Health Volume 10 - 2022.
d0i:10.3389/fpubh.2022.1118116.

Krusche, S., Seitz, A., 2018. Artemis: An automatic assessment management system
for interactive learning, in: Proceedings of the 49th ACM technical symposium
on computer science education, pp. 284-2809.

Kulik, J.A., Fletcher, J.D., 2016. Effectiveness of intelligent tutoring systems: a
meta-analytic review. Review of educational research 86, 42-78.

Labadze, L., Grigolia, M., Machaidze, L., 2023. Role of ai chatbots in education:
systematic literature review. International Journal of Educational Technology in
Higher Education 20, 56.

Lelievre, M., Waldock, A., Liu, M., Aspillaga, N.V., Mackintosh, A., Portelo,
M.J.O., Lee, J., Atherton, P., Ince, R.A., Garrod, O.G., 2025. Benchmarking the
pedagogical knowledge of large language models. arXiv preprint arXiv:2506.18710

Lewis, J., Fowler, M., 2014. a definition of this new architectural term.

Ma, W., Adesope, O.0., Nesbit, J.C., Liu, Q., 2014. Intelligent tutoring systems
and learning outcomes: A meta-analysis. Journal of educational psychology 106,
901.

Merrimack College, 2023. Merrimack college teacher survey 2023. URL:
https://www.merrimack.edu/academics/education-and-social-policy
/about-old/merrimack-college-teacher-survey/. accessed 29th July 2025.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B.,
Spitzer, E., Raji, .D., Gebru, T., 2019. Model cards for model reporting,
in: Proceedings of the Conference on Fairness, Accountability, and Trans-
parency, Association for Computing Machinery, New York, NY, USA. p. 220-229.
doi:10.1145/3287560.3287596.

Nunes, A., Cordeiro, C., Limpo, T., Castro, S.L., 2022. Effectiveness of automated
writing evaluation systems in school settings: A systematic review of studies from
2000 to 2020. Journal of Computer Assisted Learning 38, 599-620.

Omiyad Network, 2019. Scaling access & impact: Realizing the power of edtech.
executive summary .

28

Otto, D., Kerres, M., 2022. Increasing sustainability in open learning: Prospects
of a distributed learning ecosystem for open educational resources. Frontiers in
Education Volume 7 - 2022. doi:10.3389/feduc.2022.866917.

Palfrey, J., Gasser, U., 2012. Interop: The promise and perils of highly intercon-
nected systems. Basic Books.

Panadero, E., Lipnevich, A.A., 2022. A review of feedback models and typologies:
Towards an integrative model of feedback elements. Educational Research Review
35, 100416. doi:https://doi.org/10.1016/j.edurev.2021.100416.

Pangrazio, L., Selwyn, N., Cumbo, B., 2023. A patchwork of platforms: map-
ping data infrastructures in schools. Learning, Media and Technology 48, 65-80.
doi:10.1080/17439884.2022.2035395.

Parnas, D.L., 1972. On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053-1058. doi:10.1145/361598.361623.

Perry, D.E., Wolf, A.L., 1992. Foundations for the study of software architecture.
SIGSOFT Softw. Eng. Notes 17, 40-52. doi:10.1145/141874.141884.

REDACTED, 2020. GCSE English Language 8700/1: November 2020 Question
Paper. https://REDACTED. Accessed August 1, 2025.

Reigeluth, C.M., Karnopp, J.R., et al., 2013. Reinventing schools: It’s time to break
the mold. Bloomsbury Publishing PLC.

Sadler, D.R., 1989. Formative assessment and the design of instructional systems.
Instructional Science 18, 119-144. doi:10.1007/bf00117714.

Sangwin, C., 2013. Computer aided assessment of mathematics. OUP Oxford.

Sangwin, C.J.,; 2007. Assessing elementary algebra with stack. International
Journal of Mathematical Education in Science and Technology 38, 987-1002.
doi:10.1080/00207390601002906.

Selwyn, N., Hillman, T., Bergviken-Rensfeldt, A., Perrotta, C., 2023. Making sense
of the digital automation of education. Postdigital Science and Education 5, 1-14.
d0i:10.1007 /s42438-022-00362-9.

Shetye, S., 2024. An evaluation of khanmigo, a generative ai tool, as a computer-
assisted language learning app. Studies in Applied Linguistics and TESOL 24.

Shute, V.J., 2008. Focus on formative feedback. Review of Educational Research
78, 153-189. do0i:10.3102/0034654307313795.

Simon, H.A.] 1962. The architecture of complexity. Proceedings of the American
Philosophical Society 106, 467-482.

Sullivan, K.J.,; Griswold, W.G., Cai, Y., Hallen, B., 2001. The structure and
value of modularity in software design. SIGSOFT Softw. Eng. Notes 26, 99-108.
doi:10.1145/503271.503224.

29

Tejado, I., Nuevo-Gallardo, C., de la Encarnaciéon-Sama, R., Pérez, E., Vinagre,
B., 2023. Using matlab grader for formative feedback in engineering degrees, in:
INTED2023 Proceedings, IATED. pp. 5563-5573.

Valenti, S., Neri, F., Cucchiarelli, A.; 2003. An overview of current research on
automated essay grading. Journal of Information Technology Education: Research
2, 319-330.

VanLehn, K., 2011. The relative effectiveness of human tutoring, intelligent tutor-
ing systems, and other tutoring systems. Educational Psychologist 46, 197-221.
doi:10.1080/00461520.2011.611369.

Wang, S.; Xu, T., Li, H., Zhang, C., Liang, J., Tang, J., Yu, P.S., Wen, Q.,
2024. Large language models for education: A survey and outlook. URL:
https://arxiv.org/abs/2403.18105.

Wang, Y., Kadiyala, H., Rubin, J., 2021. Promises and challenges of microservices:
an exploratory study. Empirical Software Engineering 26, 63.

Whitworth, J., 1858. Miscellaneous papers on mechanical subjects. Longman,
Brown, Green, Longmans, and Roberts.

Winstone, N.E., Boud, D., 2022. The need to disentangle assessment and
feedback in higher education. Studies in Higher Education 47, 656-667.
doi:10.1080/03075079.2020.1779687.

Zhang, X., Zhang, P., Shen, Y., Liu, M., Wang, Q., Gasevi¢, D., Fan, Y., 2024.
A systematic literature review of empirical research on applying generative ar-
tificial intelligence in education. Frontiers of Digital Education 1, 223-245.
do0i:10.1007 /s44366-024-0028-5.

30

Appendix A. Exemplar GCSE English Feedback

r

Content Feedback
Praise on Ideas

You have created a vivid depiction of the Christmas scene, and your ability
to convey the atmosphere is quite engaging. The imagery surrounding Santa
Claus and the festive decorations offers the reader a taste of holiday cheer,
effectively immersing them in the experience. You've also nicely incorporated
personal reflection, allowing the reader a glimpse into the nostalgia and com-
plexity of your feelings about Christmas.

Target on Cohesion

Have you considered ways to improve the transitions between your para-
graphs? Some connections feel abrupt, such as the shift from the festive
decorations to your past visit. Perhaps you could add a linking sentence that
highlights how time has changed the town and your memories, such as: “Re-
flecting on my last visit, I could hardly recognize the bustling town that had
once been so tranquil.” This could create a smoother transition, enhancing
the flow of your description.

Technical Accuracy
Praise on Vocabulary

Your choice of vocabulary is quite expressive, particularly phrases like “deli-
cate flake drifts silently from the heavens,” which paint a beautiful picture in
the reader’s mind. The use of adjectives such as “gorgeous” and “precious”
contributes positively to the mood you’re trying to create, and pulling in sen-
sory elements like taste and sight is a great way for readers to connect with
your writing.

Target on Spelling

There are a few spelling mistakes that need attention, specifically “Santa
clause” which should be “Santa Claus” and “coazy” should be corrected to
“cozy.” Additionally, “Chritmas” should read as “Christmas.” These minor
errors distract from your overall prose, so please be sure to proofread your
work.

Final Thoughts

The piece feels more narrative than strictly descriptive, shifting between per-
sonal experience and festive observations. Instead of solely recounting events,
consider focusing more on the sensory elements of the scene, such as the
smells of pine, the sound of laughter, and the coolness of the air. This shift
can deepen your descriptive writing. Great job, keep writing!

Appendix B. Trade-offs when considering microservices

31

Table B.6: Trade-offs when considering a microservice architecture. Summarised from Lewis and
Fowler (2014) and Dragoni et al. (2017).

independently

services

Issue Benefits Drawbacks What is distinctive
about microservices
Team Teams can develop, Requires coordination Services align with team
autonomy deploy, and scale of service boundaries boundaries and
services independently and communication deployment pipelines,
not just code separation
System Enables decomposition Adds distributed Encourages
complexity of large systems into complexity, network independently deployed
manageable parts overhead, data units with API
consistency challenges contracts
Project Useful once system Overkill for small or Designed for evolving
maturity / becomes too large for a | early-stage systems large-scale systems, not
size single codebase early-stage prototypes
DevOps Enables continuous Requires advanced Demands CI/CD,
maturity delivery and scalable automation, containerization, service
infrastructure deployment, logging, discovery — not just
and monitoring modular code
Fault Services can fail Adds complexity in Failure isolation is
tolerance independently, system error handling, retries, enforced at runtime
can degrade gracefully timeouts, fallbacks boundaries, not just
design-time separation
Deployment | Individual services can Requires orchestration Deployment units are
flexibility be deployed and scaled and versioning across decoupled, unlike a

modular monolith

Reuse and

Teams can own

Potential tech sprawl,

Cross-team

isolation

specialisa- technology stacks suited | operational complexity heterogeneity allowed
tion to each service (e.g. one service in Go,
another in Node.js)
Performance | May improve scalability | Remote calls introduce Services communicate
/ latency via independent scaling | latency and increased over networks rather
surface area for failure than function calls
Modularity Microservices enforce True modularity doesn’t | Microservices are a
vS. mi- modular boundaries require microservices deployment and
croservices through network runtime pattern, not

just a design or code
organisation approach

32

